NORTH MAHARASHTRA UNIVERSITY, JALGAON

'A' Grade NAAC Re-Accredited (3rd Cycle)

SYLLABUS

Master of Science in Microbiology

Part-II (Semester – III and IV)

w. e. f. June 2016 -2017

NORTH MAHARASHTRA UNIVERSITY, JALGAON

Syllabus for M.Sc. (Part- II) Microbiology

Subject code	Title of the paper	Duration (Hrs./Wk)	Max. Marks	Exam. Time (Hrs.)
	SEMESTER – III			
The	eory courses			
MB-301	Applied and Environmental Microbiology	04	100	03
MB-302	Molecular Biology and Bioinformatics	04	100	03
MB-303	Pharmaceutical Microbiology	04	100	03
Lab	ooratory courses			
MB-304	Methods in Biostatistics and Bioinformatics	04+04	100	06
MB-305	Methods in Applied Microbiology	04+04	100	06
	SEMESTER – IV			
The	ory courses			
MB-401	Fermentation Technology	04	100	03
MB-402	Applied Molecular Biology	04	100	03
MB-403	Agricultural Microbiology	04	100	03
Lab	ooratory courses		·	
MB-404	Methods in Biotechnology	04+04	100	06
MB-405	Laboratory course (Project Dissertation)	04+04	100	06

Effective from June 2016 -2017

Instructions:

- 1. Each theory course has to be completed in 50 lectures of 60 min duration each in one semester.
- 2. Semester III and IV will have THREE theory courses and TWO Practical courses.
- 3. Practical examination of each laboratory course shall be conducted at the end of each respective semester.
- 4. Each course will be of 100 marks (40 marks internal and 60 marks-external examinations).
- 5. Seminar activity in each semester should be conducted and made compulsory to each student.
- 6. The student will have to carry out the research based project work in lieu of practical in the fourth semester in the department.

SEMESTER III

	MB-301: Applied and Environmental Microbiology	Lectures
Unit I	Food Microbiology	10
	Methods of sampling and investigation	
	Preparation of dilutions	
	Offline and online approach of microbial analysis	
	• Detection and enumeration of indicator bacteria, pathogenic and	
	toxigenic microbes	
	Mycotoxins	
	 Microbiological examination of specific foods Meat and meat products 	
	 Milk and milk products 	
	 Food intoxications: Causes, pathogenesis and prevention and control 	
Unit-II	Microbiological treatment of waste water	10
01111-11	Principles and need for biological waste water treatment	10
	 Conventional treatment process 	
	Primary- Sedimentation or settling	
	Biological treatment process: Aerobic suspended-growth, Aerobic	
	attached-growth (TF, RBC, PBR), Anaerobic suspended growth and	
	Anaerobic attached growth	
	- Advanced tertiary process: Solids removal, Biological nitrogen	
	removal, Biological phosphorus removal and Disinfection	
	• Waste water treatment for distillery and antibiotic industries	
	 Solid waste management Composting: Principle, chemistry and biology of composting, 	
	• Composting: Principle, chemistry and biology of composting, technology of composting, criteria of compost maturity,	
	applications of compost	
	• Biomethanation: Feedstocks, BMP, microbiology of	
	biomethanation, biochemistry of methane synthesis.	
Unit- III	Biological conversion of Lignocellulosic waste	10
	Composition, structure of lignocelluloses and issues	
	• Pre-treatment of lignocellulosic material: Physical, Chemical and	
	Biological	
	Fermentation: Submerged, SSF, SHF, SScF	
	Applications in lignocellulosic ethanol production	
Unit- IV	Bioremediation and biodegradation of xenobiotics	10
	 Concept of biodegradability and bioconversion Drive index for any service biodegradability 	
	 Principles for measuring biodegradability Machanism of hisdogradation / histogramadiation 	
	 Mechanism of biodegradation / bioremediation Methods for bioremediation: Intrinsia, Disatimulation, and 	
	 Methods for bioremediation: Intrinsic, Biostimulation, and Bioaugmentation 	
	 Impediments to microbial degradation of compounds 	
	 Biodegradation of xenobiotics 	
	 Biochemical/ physiological approach 	
	 Molecular techniques 	
	 Toxicological risk assessments 	

Unit- V:	Biomarkers and Bioreporters	10
	• Concept and approaches to metagenomics analysis, ecological inference	
	• Biomarker gene (antibiotic and heavy metal resistance genes, ice-	
	nucleation, bioluminescence genes, green fluorescent genes)	
	Bioreporter genes	
	• Biosensor	

- Singh, A. and Ward, O. P. (2004) Biodegradation and Bioremediation, Springer-Verlag,, Berlin (ISBN: 3-540-21101-2).
- Hurst, C.J. (2002) Manual of Environmental Microbiology, ASM Press, Washington D.C. (ISBN: 1-55581-199-x).
- Demain, A. L. and Davies, J. E. (1999) Manual of Industrial Microbiology and Biotechnology, ASM Press, Washington D.C. (ISBN: 1-55581-128-0).
- Martin, A. M. (1998) Bioconversion of waste materials to Industrial Products, Blackie Academic and Professional, London (ISBN: 0-7514-0423-3).
- Harrigan, W. F. and McCance, M.E. (1994) Laboratory Methods in Food and Dairy Microbiology. Academic Press, London.
- Mossel, D.A.A., Correy, J.E.L., Struijk, C.B. and Baird, R. M. (1995) Essestials of the Microbiology of Foods, John-Wiley and Sons Inc., New York.
- Satyanaraya, U. (2005) Biotechnology, Books and Allied (P) Ltd., Kolkata.
- Hobbs, B & Roberts, D. (1993) Food Poisoning & Food Hygiene, Edward Arnold, London.
- Baker, K.H. and Herson, D. S. (1994) Bioremediation, Mc-Graw Hill Inc., New York.
- Pandey, A. (2004) Concise Encyclopedia of Bioresource Technology, Food Products Press, The Haworth Reference Press, New York (ISBN: 1-56022-980-2).
- Rehm, R. G. and Reed, G. (1984) Biotechnology, Vol.1-8, Verlag-Chemie, Weinheim.
- Forster, C. F. (1985) Biotechnology and waste water treatment, Cambridge University Press, Cambridge.
- Maier, R. Pepper, I. L. and Gerba, C. P. (2000) Environmental Microbiology, Academic Press, London.

	MB-302: Molecular Biology and Bioinformatics	Lectures
Unit I:	Basic molecular biology	10
	• DNA: topological properties (linking, writhing, twisting number),	
	Structure of super helix, Base flipping, Palindrome, Inverted repeats and stem and loop.	
	Overview of DNA replication	
	• RNA: Structure, types and functions	
	• Denaturation and renaturation kinetics of nucleic acids	
	• Proteins: Domain and motifs Histone proteins,	
	• DNA –Protein interactions - helix-loop-helix, helix-turn-helix, leucine zipper, Zinc finger motifs,	
Unit II	Transcription	10
	• Types of RNA polymerase (prokaryotic and eukaryotic), Process of transcription	
	• mRNA processing, editing: capping, adenylation, splicing, RNA transport	

	 Transcriptional regulation: transcriptional bursting/pulsing, specificity factors, enhancers, repressors, activators and general transcription factors Post-transcriptional modifications: RNA degradation, nuclear transport, mRNA localization, anti-sigma factors, RNAi (siRNA, miRNA and CRISPR mechanism) 	
Unit III:	Translation	10
	Genetic code and its properties	
	• Ribosome (structure and composition), Activation of tRNA, tRNA synthetase	
	• Steps: Initiation: factors and their regulation, Elongation, Termination	
	• Inhibitors	
	• Post translational modification of proteins and protein degradation	
	• Translational regulation: Cytoplasmic polyadenylation, UTR	
	sequence elements, RNA binding proteins, ribosomal regulation,	
	non-sense mediated RNA decay, 5` decapping	
Unit IV	Protein targeting and degradation	10
	Signal hypothesis	
	Signal sequences in bacteria	
	Membrane and Lysosomal protein targeting	
	HSP and Chaperons	
	Protein degradation	
Unit V	Basic Bioinformatics	10
	• Biological databases :Nucleic acid databases (GenBank, EMBL,	
	DDBJ)	
	• Protein sequence database (UniProt, PDB)	
	• Scoring matrices, local. global and multiple sequence alignment	
	Database search for homologous sequences, BLAST	
	Phylogenetic analysis: Overview and tree construction methods	

- Lewin B. (2013) Gene XI, Pearson Prentice Hall, Pearson Education, Inc., NT, USA (ISBN: 0-13-123826-4).
- Malacinski GM (2003) Essentials of Molecular Biology, 4th edn., Jones & Batiett, London. (ISBN: 0-7637-2133-6).
- Watson JD, Baker JA, Bell SP, Gann A, Lewin M, Losick R (2004) Molecular Biology of the Gene, Benjamin Cummings- CSHL Press, USA.
- Berg JM, Tymoczko, JL, Stryer, L (2012) Biochemistry 7th edn. W. H. Freeman & Co. New York.
- Wink M. (2006) An Introduction to Molecular Biotechnology, Wiley-VCH Verlag Gmbh & Co., Weinheim, Germany (ISBN: 978-3-527-31412-6/3-527-31412-1).
- Weaver, RF (1999) Molecular Biology, WCB McGraw-Hill Co. Inc., NY (ISBN: 0-697-14750-9).
- Brown, TA (1995) Essential Molecular Biology, Vol. I, A Practical Approach, IRL Press, Oxford, UK.
- Nelson DL & Cox MM (2005) Lehninger's Principles of Biochemistry, 4th edn., McMillan Worth Publ. Inc. NY.
 Russell, PJ (1998) Genetics, 5th edn, Benjamin-Cummings Publ. Co. Inc., NY (ISBN: 0-
- Russell, PJ (1998) Genetics, 5th edn, Benjamin-Cummings Publ. Co. Inc., NY (ISBN: 0-321-0038-2).
- Oliver, RP and Schweizer, M. (1999) Molecular Fungal Biology, Cambridge University Press, Cambridge, UK (ISBN: 0-521-56784-X).

- Klug, WS and Cummings, MR (2003) Concepts of Genetics, 7th edn., Pearson Education Inc., (ISBN: 81-7808-884-3).
- Bates, AD and Maxwell, A (2006) DNA Topology, Indian Edn., Oxford University Press, New Delhi (ISBN: 0-19-56831-X).
- Turner, PC, McLennan, AG, Bates AD and White, MRH (2002) Instant Notes: Molecular Biology, 2nd edn., Viva Books Pvt. Ltd., New Delhi (ISBN: 81-7649-215-9).
- Lesk, AM (2002) Introduction to Bioinformatics, Oxford University Press, UK (ISBN:0-19-925196-7).
- Korf, I, Yandell, M and Bedell, J () An essential guide to the Basic Local Alignment Search Tool-BLAST O'Reilly Network Publishers.
- Baxevanis, A. D. and Ouellette, B. F. F. (2001) Bioinformatics: A practical guide to the analysis of genes and proteins. Second Edition. John Wiley & Sons, New York.
- Mount, D. W. (2001) Bioinformatics: sequence and genome analysis. Cold Spring Harbor Laboratory Press, New York.
- Zoe L. and Terence C. (2004) Bioinformatics: Managing Scientific Data, Morgan Kaufmann Publishers, New Delhi.

	MB-303: Pharmaceutical Microbiology	Lectures
Unit I	Antibiotics and Synthetic antimicrobial agents	10
	Mechanism of action, microbial resistance, therapeutic, prophylactic	
	usage and adverse reactions	
	• Antibiotic and Synthetic antimicrobial agents: -lactam,	
	aminoglycosides, tetracyclines, ansamycins, macrolides	
	Antifungal antibiotics: Griseofulvin	
	• Antiviral drugs: Amantidines, Nucleoside analogues, Interferons	
	• Peptide antibiotics	
	• Synthetic antibiotics: Sulphonamides, Chloramphenicol,	
	Quinolone	
Unit II	Microbial aspects of pharmaceutical products	10
	Microbial contamination	
	• Microbial spoilage (Types and factors) and preservation	
	• Sterilization of pharmaceuticals (survivor curve, D, Z, F value)	
	• Methods: Heat, Gaseous, Radiation, Filtration	
TT 14 TTT	• Disinfectants	10
Unit III	Regulatory aspects and quality assurance in pharmaceuticals	10
	• GMP in pharmaceuticals	
	• FDA regulation and pharmacopeia	
	• Design of sterile product manufacturing unit	
	• Quality control in pharmaceuticals: In-process and final product	
	control and ICH process	
	Sterilization control and sterility validation	
Unit V	Production of Biopharmaceuticals	10
	Asperaginase, and Clinical dextran	
	• Vaccines (DNA/ multivalent subunit/ bacterial)	
	• Viral vaccines: Live attenuated, Inactivated, , Live recombinant	
	Virion subunit vaccines, production of viruses for vaccines, Virus-	
	like particles, Synthetic peptide vaccines,	
	• Immunosera	

Unit VI	Drug design	10
	Rational drug design	
	 Lead drug and Pro-drug 	
	 Structure based and combinatorial approach 	
	 Peptidomimetic and strategies for drug discovery 	
	• Drug delivery : Concept and approaches	

- Hugo, WB and Russell, AD (2003/1998) Pharmaceutical Microbiology, 6th edn, Blackwel Science, Oxford, UK (ISBN: 0-632-04196-X) Reprinted.
- Krogsgaard-Larsen, P., Lilijefors, T. and Madsen, U. (2004) Textbook of Drug Design and Discovery, 3rd edn., Taylor and Francis, London (ISBN: 0-415-28288 PB).
- Haider, SI (2006) Validation Standard Operating Procedures, 2nd edn., CRC Press Taylor and Francis Group, NY (ISBN: 0-8493-9529-1).
- Dutton CJ, Haxell MA, McArthur HAI and Wax RG (2002) Peptide Antibiotics, Marcel Dekker Inc., NY, USA (ISBN: 0-8247-0245-X)
- Dekker Inc., NY, USA (ISBN: 0-8247-0245-X)
 Seth SD (2004) Textbook of Pharmacology, 2nd edn., Elsvier, New Delhi (ISBN: 81-8147-553-4).
- Bhatia R and Ichhpujani RL (1995) Quality Assurance in Microbiology, CBS Publishers, New Delhi (ISBN: 81-239-0387-1).
- Chakraborty C and Bhattacharya A (2004) Pharmacogenomics: An approach to New Drug Development. Biotech Books, New Delhi (ISBN: 81-7622-105-8).

	MB- 304: Methods in Biostatistics and Bioinformatics
1	Calculate mean, median, mode, range, variance, standard deviation, standard error,
	confidence interval using MS-Excel/suitable software
2	Plot straight Line (Linear Least squares) using LINEST Function of MS-Excel/
	suitable software
3	Plot - line, scatter graphs, bar graphs, error bars using MS-Excel/ suitable software
4	Determine: linear regression, Correlation and their coefficients using MS-Excel/
	suitable software
5	Compute paired and unpaired, F-test, t-test, using MS-Excel/ suitable software
6	Compute ANOVA, 2-test using MS-Excel/ suitable software
7	Biological databases - NCBI, Protein Data Bank and ExPasy
8	Primary and tertiary structure analysis of protein/ DNA using BLAST
9	Multiple sequence alignments using Clustal W
10	Phylogenetic tree analysis using MEGA
11	Primer designing using biological software
12	Demonstration of multivariate analysis of process parameters using statistical tools.

- Bailey, N.T.J (1959) Statistical methods in Biology, ELBS and The English Universities Press Ltd., UK.
- Irfan Ali Khan and Atiya Khanum (2004) Fundamentals of biostatistics, Ukaaz Publication, Hydrabad.

- Gupta, S. C. Fundamentals of Statistics, Himalaya Publishing House, New Delhi.
- Bliss, C. I. K. (1967) Statistics in Biology, Vol. 1, McGraw-Hill, New York.
- Gore A, Paranjpe, S. and Kulkarni M. (2009) Statistics for everyone, SIPF Academy Publishers, Nashik.
- Baxevanis, A. D. and Ouellette, B. F. F. (2001) *Bioinformatics: A practical guide tothe analysis of genes and proteins.* Second Edition. John Wiley & Sons, New York.
- Ewens Warren J. and Gregory R. Grant. (2004) *Statistical Methods in Bioinformatics, An Introduction*, Springer, New York.
- Lacroix, Z. and Critchlow, T. (Eds.) 2003. *Bioinformatics. Managing Scientific Data*. Morgan Kaufmann Publishers.
- Misener, S. and Krawetz, S. A. (Eds.). 2000. *Methods in Molecular Biology*, Volume 132. Bioinformatics: Methods and Protocols. Humana Press, New Jersey.
- Mount, D. W. (2001) *Bioinformatics: sequence and genome analysis*. Cold Spring Harbor Laboratory Press, New York.

MB- 305: Methods in Applied Microbiology

	WID- 505. Wethous in Applied Witerobiology
1	Survivor curve for Ultraviolet light/Heat /ethylene oxide
2	Validation of autoclave
3	Phenol coefficient (Rideal Walker Test/ Chick Martin Test),
4	Sterility testing of in-process materials and finished products
5	Evaluation of carcinogenicity using Ames test
6	Microbial Assay of Vitamin
7	Microbial Limit Test (analysis of water, raw material, finished product, packaging
	material, Excipients)
8	Environmental monitoring of samples from production areas and personnel.
9	Evaluation of quality of media/reagents for Growth promotion tests.
10	Endotoxin/pyrogen using LAL (water, in-process, final product)
11	Validation of efficiency of laminar air flow
12	Demonstration of a typical lignocellulosic bioconversion process using SSF/SHF/SScF

- White, D (2000) The Physiology and Biochemistry of Prokaryotes, Oxford University Press, Oxford.
- Mudili, J (2007) Introductory Practical Microbiology, Narosa Publ. House Pvt. Ltd., New Delhi (ISBN: 978-81-7319-744-4).
- Primrose, SB and Wardlow, AC (1982) Source Book for Experiments for the Teaching of Microbiology, Academic Press, London (ISBN: 0-12-565680-7).
- Sawhney, SK and Singh, R. (2001) Introductory Practical Biochemistry, Narosa Publ. House, Chennai.

SEMESTER – IV

	MB - 401: Fermentation Technology	Lectures
Unit I	Underlying principles, Upstream processing	10
	 Metabolic pathways and control mechanisms 	
	• Fermentation- kinetics of batch and continuous culture	
	 Designing of medium and strain improvement 	
	 Microbial growth kinetics and measurement of cell growth 	
	Stoichiometry of microbial growth and product formation	
Unit II	Bioreactor (Design and Application) and its operation	10
	 Design and construction materials of bioreactor 	
	 Parameters involved in fermentation process monitoring 	
	 Aeration and agitation for mass transfer 	
	• Strategy for medium sterilization, maintenance of aseptic/axenic condition	
	• Control of process parameters and overview of process automation	
	• Scale up and production economics	
Unit III	Downstream processing and product recovery	10
	Biomass harvesting: centrifugation, filtration	
	• Cell disruption: ultrasonication, thawing, enzymatic way.	
	• Product extraction: Liquid –liquid, supercritical fluid extraction,	
	ultrafiltration, Three phase partitioning	
	• Product purification and characterization: Chromatography-	
	adsorption, size exclusion, affinity, ion exchange, reverse phase, HPLC	
	Quality practices and audit	
	• Quality practices- concept of SOP, GLP and role of FDA	
	 Biosafety aspects of handling infectious organisms 	
	• IPR: Patents, copyrights, trademarks, geographical indications	
	• Patenting biological materials, transgenic materials	
	Patent regulatory bodies at National and International level	
Unit IV	Microbial Products I	10
	• Enzymes: Protease, asparginase	
	Organic acids: citric acid, lactic acid	
	Amino acids: Lysine, aspartic acid	
	Polysaccharides: Alginate, Hyaluronic acid	
Unit V	Microbial Products II	10
	Antibiotics: Penicillin, streptomycin	
	• Ethanol: 1st, 2nd and 3rd generation	
	 Vaccines production: DPT, MMR 	
	Recombinant proteins: Insulin, Monoclonal antibodies	
	Nucleotides: IMP, GMP	

- Mukhopadhyay, S.N. (2004) Process Biotechnology Fundamentals, 2nd edn., Viva Books, Mumbai, (ISBN: 81-7649-496-8).
- Shuler M.L.and Kargi F (2008) Bioprocess Engineering-Basic Concepts, 2ndEdn. Prentice-Hall

- The Indian Environmental Protection Act (EPA), 1986.
- Food Safety and Standards act (Government of India), 2006.
- El-Mansi, EMT, Bryce, CFA, Demain, AL and Allman, AR (2007) Fermentation Microbiology and Biotechnology, 2nd edn., CRC Taylor and Francis Group, Boca Raton, Florida (ISBN: 0-8493-5334-3).
- Lodish, MR (2001) Bioseperation Engineering, Wiley Interscience, NY (ISBN:0-471-24476-7)
- SreeKrishna, V. (2007) Bioethics and Biosafety in Biotechnology, New Age International (P) Ltd., Publ., Mumbai (ISBN: 81-224-2085-0).
- Moo-Young, MC (2011) Comprehensive Biotechnology, Vol. I, II & III, Elsevier, ISBN:978-0-08-088504-9.
- Goodfrey, T. and Reichelt, JR (1997) Industrial Enzymology, 2nd edn., McMillan Publ. Co., London.
- Rhem, HJ, Reed, G, Puhler, A. and Stadler, P. (1997) Biotechnology, 2nd edn., VCH Publ. Germany.
- Singh, KC (2004) Intellectual Property Rights on Biotechnology, BCIL, New Delhi.
- Stanbury, Peter F.; Whitaker, Allan; Hall, Stephen J. (1994) Principles Of Fermentation Technology. II Edn, Butterworth-Heinemann Publishers.
- Okafor Nduka (2007) Modern Industrial Microbiology and Biotechnology, Science Publishers, USA.

	MB-402: Applied Molecular Biology	Lectures
Unit I	Tools of molecular biology (or rDNA technology)	10
	• Enzymes: Restriction endonucleases and its types, DNA methylases,	
	DNA polymerase, DNA ligases, Kinases, Phosphatases, topoisomerase	
	• Cloning vectors: Choice and its properties, Bacterial vectors: plasmid,	
	Bacteriophage, Cosmids, Phagmids, BACs. Eukaryotic vectors: YACs,	
	Ti, SV40	
	Cloning hosts: Prokaryotic and eukaryotic hosts: properties	
Unit II	Methods in rDNA technology	10
	 Vector mediated and chromosomal integration 	
	Genomic and cDNA library construction	
	• Gene transfer techniques: Transfection, Electroporation,	
	Microinjection, Biolistic	
	 Screening, analysis and confirmation of rDNA 	
	• Genetic methods	
	• Hybridization techniques – Dot Blot, Colony, Dip stick, Plaque	
	• Immunochemical methods	
	• Plus and minus screening, HRT and HART	
	• Analysis – Restriction mapping, Blotting techniques	
	• Confirmation by genetic marker and reporter genes	
TT . • 4 TTT	Applications of genetic engineering	10
Unit III	Microbial Genomics	10
	• Concept of - Genome density, GC content, CPG Islands, Isochores,	
	codon usage bias, cDNAs and ESTs, Contigs, epigenomics	
	• Structural, Functional, Application and Comparative Genomics:	
	• Methods for whole genome sequencing, gene annotation	
	• Gene and SNP identification • Geneme menning (Conjugation Recombination and	
	 Genome mapping (Conjugation, Recombination and 	

	complementation) and map integration	
	Genome editing using CRISPR-cas system	
Unit IV	Protein Engineering and Proteomics	10
	• Protein identification and Expression Mapping: 2D-gel	
	electrophoresis, Mass Spectrophotometry and isotope labelling	
	Protein-ligand docking	
	• Experimental approach to Protein-Protein interaction mapping:	
	 Yeast and Bacterial 2-hybrid systems 	
	 Protein-ligand interactions 	
	 Protein fragment complement assays 	
	• Protein arrays and chips: Antibody and peptide arrays	
Unit V	Techniques in Molecular biology	10
	• DNA Sequencing : Sanger, Maxum Gilbert and high throughput	
	[Polony, 454 pyrosequencing, Illumina (Solexa), Massively parallel	
	signature sequencing (MPSS), SOLiD, Ion Torrent semiconductor,	
	single molecule, Single molecule real time (SMRT)]	
	• PCR: Basics, Reverse transcriptase PCR, Real time PCR, Applications	
	• Analysis of polymorphism: RFLP, RAPD, AFLP, SSCP, DGGE	
	Analysis of gene expression : SAGE, Microarray	

- Nicholl, D.S.T. (2002) An Introduction to Genetic Engineering, 2nd edn., Cambridge University Press, Cambridge, UK (ISBN: 81-7596-101-5 paperback).
- Malacinski, G.M. (2003) Essential of Molecular Biology, 4th edn, Jones & Barlett Publishers, Boston (ISBN: 0-7637-2133-6).
- Alcamo, IE (2001) DNA Technology, Academic Press, London, UK (ISBN: 0-12-048920-1).
- Brown, TA (1995) Essential Molecular Biology, Vol. I (A Practical Approach), IRL Press, Oxford.
- Terence A. Brown (2015) Gene Cloning and DNA Analysis: An Introduction, 7th Edn. John Wiley & Sons Ltd, UK. ISBN: 9781405181730.
- Primrose, SB and Wardlow, AC (1982) Source Book for Experiments for the Teaching of Microbiology, Academic Press, London (ISBN: 0-12-565680-7).
- Sambrook and Russell Molecular Cloning Vol. I, II and III, CSHL Press, USA.
- Weaver, RF (1999) Molecular Biology, WCB McGraw Hill Co., Inc., NY (ISBN: 0-321-0038-2).
- Timothy, Palzkill (2002) Proteomics. Springer US, ISBN 978-0-7923-7565-4.
- Channarayappa (2006) Molecular Biotechnology: Principles & Practice, Universities Press (India) Pvt. Ltd, Hyderabad (ISBN: 81-7371-501:7).

	MB-403: Agricultural Microbiology	Lectures
Unit I	Microbial ecology	10
	Basic microbial ecology	
	Microbial interactions	
	Microbial communities	
	Methods to quantitative microbial ecology	
Unit II	Microbial interactions with plant roots	10
	Rhizosphere and its anatomy	

	• Mycorrhizae (VAM, OM, EM, Ectomycorrhizae)	
	 Plant Growth Promoting Rhizobacteria (PGPR) 	
	• Strategies for rhizosphere and mycorrhizae community study	
	Microbial interaction with aerial plant structure	
	• Phylloplane, Stems/ flowers, leaf buds	
	Approaches for studies	
	Leguminous root nodules	
	• Nodulation process and mechanism of nitrogen fixation	
	• Strategies to study infection process, root nodulation and N ₂	
	fixation	
UnitIII	Pathogenic interactions with plants	10
	• Plant defence mechanisms (structural, biochemical, HR, SAR)	
	• Microbial pathogenicity mechanisms in virus, bacteria, fungal	
	pathogens	
	Genetic basis of plant-pathogen interactions	
	• Region-specific plant diseases (etiology, symptoms and control):	
	Red rot of sugarcane, Sigatoka disease of banana, Banana bunchy	
	top, Tikka disease of groundnut, Powdery mildew, Rust	
Unit IV	Microbial Biocontrol Agents	10
	Strategies for plant disease management	
	• Biopesticides: BT, Siderophore and <i>Trichoderma; Pseudomonas</i>	
	Biocontrol of post-harvest diseases	
	Control of plant pathogens by genetic engineering	
Unit V	Current approaches	10
	Integrated Plant Nutrition through biofertilizers	
	Phytoremediation: Rhizodegradation	
	Rhizosphere engineering	
	• Microbial reclamation of saline and sodic soils	

- Stanier, RY, Ingraham, JL, Wheelis, ML and Painter, PR (1993) General Microbiology, 5th edn., The McMillan Press Ltd., London (ISBN: 0-333-41768-2).
- Atlas, RM ad Bartha, R (1998) Microbial Ecology-Fundamental and Applications, Addison Wesley Longman Inc.
- Lynch and Poole (1984) Microbial Ecology- A Conceptual Approach, Blackwell Scientific Publ., New York.
- Streips, UN and Yasbin, RE (2002) Modern Microbial Genetics, 2nd edn., Wiley-Liss, USA (ISBN: 0-471-38665-0).
- Coyne, MS (2004) Soil Microbiology: An Explanatory Approach, Delmar/Thomson Asia Pvt. Ltd., Singapore (ISBN: 981-240-203-9).
- Kumar, HD and Kumar, S (2004) Modern concepts of Microbiology, 2nd edn., Vikas Publishing House Pvt. Ltd., New Delhi (ISBN: 81-259-1000-X).
- Hurst, CJ, Crawford, RL, Knudsen, GR, McInerey, MJ and Stetzenbach, LD (2002) Manual of Environmental Microbiology, 2nd edn., ASM Press, Washington DC (ISBN: 1-55581-199-X).
- Ciancio, A and Mukerji, KG (2007) General Concepts in Integrated Pest and Disease Management, Springer, The Netherlands (ISBN: 978-1-4020-6060-1).
- Buchnan, BB, Gruissem, W and Jones, RL (2000) Biochemistry and Molecular Biology of Plants, IK International Pvt. Ltd., New Delhi (ISBN:81-88237-11-6).

- Boland, GJ and Kuykendall, LD (1998) Plant-Microbe Interactions and Biological Control, Marcel Dekker Inc., NY, USA (ISBN: 0-8247-0043-0).
- Chincholkar, SB and Mukerjii, KG (2007) Biological Control of Plant Diseases, Haworth Press Inc., London (ISBN: 1-56022-328-6).

MB-404: Methods in Biotechnology		
1	Isolation and estimation of RNA / mRNA from bacteria/ yeast/ fungi	
2	Determination of Tm and % (G+C) of DNA	
3	DNA fingerprinting through southern blotting	
4	Gene transfer using electroporation	
5	Demonstration of GFP marker cloning and expression	
6	Fermentative production / biotransformation of antibiotic/ steroid	
7	Estimation of penicillin/ streptomycin by microbiological/ chemical assay	
8	Analysis of biogas digested slurry for organic C, COD, lignin, Fatty acids and N	
9	Nodulation of legume by Rhizobium using Leonard Jar/ Pot assay	
10	Production and detection of siderophore produced by bacteria / fungi	
11	Isolation of VAM spores from soil	
12	Isolation of microbes from Rhizosphere / Phyllo-plane/ PGPR	

- Sawhney, SK and Singh, R. (2001) Introductory Practical Biochemistry, Narosa Publ. House, Chennai.
- Aneja, KR (2005) Experiments in Microbiology, Plant Pathology and Biotechnology, International Publshers, New Delhi (ISBN: 81-224-1494-X).
- Tablot, N. (2005) Molecular and Cellular Biology of Filamentous Fungi, Practical Approach, Indian Edn., Oxford University Press, New Delhi (ISBN: 0-19-567943-1).
- Hewiitt, W (1977) Microbiological Assay, Academic Press, New York.
- McMei, B. and Harvey, L. (1986) Fermentations: Practical Approach, IRL Press, Oxford.
- Kalaichelvan, PT (2006) Microbiology and Biotechnology: A Laboratory Manual, MJP Publ., Chennai (ISBN: 81-8094-008-X).
- IMTECH Laboratory Manual for Bacterial Genetics, Inslt. Microbuial Technology, Chandigarh.
- Cappucino, J and Sherman, N.C. () Microbiology-A Laboratory Manual, The Benjamin-Cummings Publ. Co., Inc., New York.
- Sambrook and Russell Molecular Cloning Vol I, II and III, CSHL Press, USA.
- Janarthanan, S. and Vincent, S. (2007) Practical Biotechnology, Universities Press (India) Pvt. Ltd., Hydrabad (ISBN: 13-978-81-7371-582-2).
- Schmauder, H.P, Schweizer, M and Schewizer, L.M (2003) Methods in Biotechnology, Taylor and Francis Ltd., London (ISBN: 0-7484-0430-9).
- Davis, L.G., Dibner, MD and Battey, JF (1986) Basic Methods in Molecular Biology, Appleton and Lange, Norwalk (ISBN: 0-8385-0582-1).
- Dubey R. C., Maheshwari D. K. (2005) Practical Microbiology, S.Chand&Co, New Delhi

MB-405 : Laboratory course (Project Dissertation)

The project allotted during the Forth semester and it is expected that the students will design experiments and collect experimental data to deduce conclusions. At the end, they will submit a detailed thesis for evaluation. The students should be introduced to research methodology in the beginning through few lectures.

The approach towards the execution of project should be as follows:

- 1. Selection of topic relevant to priority areas of biotechnology.
- 2. Collection of literature from libraries, internet, on-line journals, etc.
- 3. Planning of research experiments
- 4. Performing the experiments with scientific and statistical acceptability.
- 5. Presentation of observations and results.
- 6. Interpretation of results and drawing important conclusions.
- 7. Discussion of obtained results with respect to literature reports.
- 8. Preparation of report (thesis) containing introduction, materials and methods, results and discussion, conclusions, bibliography.
- 9. Presentation of research data in a bound form.

Epilogue

Skills imparted: The curriculum is designed to instill basic and applied knowledge of the subject to the students. One of the major objectives considered during designing is to make technically educated human resource. Basic microbiology, molecular biology, microbial physiology may help to find out unseen facts in various environmental, agriculture, food and pharmaceutical sectors. The subjects like genetic engineering, applied microbiology, microbial biochemistry, pharmaceutical microbiology, fermentation technology and biochemical techniques are designed to impart theoretical and practical knowledge of modern scientific advances in the field. Further to enhance skillful human resource with precision, the course like biostatistics and bioinformatics are included. The subject like Microbial biotechnology would give not only the practical knowledge of industry and industrial processes but also make aware the students with the global environmental problems like pollutions, contamination and bioremediation. Practical courses are based on theory courses and are designed to improve research oriented skills of students.

Job opportunity: The designed curriculum offers job opportunities in various sectors like,

- Pharmaceutical industry : Clinical, medicine, vaccine, QC division
- Biotech industry: Recombinant product, QC, QA
- Agrochemical and pesticide industry
- Chemical industry: synthesis, testing
- Environmental protection industry and Agencies
- Research leading to Ph. D. degree
- Self entrepreneurship
- Marketing of biological and pharmaceutical products